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SYNOPSIS 

The aim of this article is to adduce various theoretical approaches to evaluating the stress 
displacement field throughout a pancake sample. We shall attempt to produce an  effective 
material property, v e s t  which is consistent with the measured values of y = - h ( a ) / a c  
(normalized volumetric contraction), the initial modulus from the triaxial tests on 
compression, M,,,,,, and tension, M,,,,. In order to obtain analytical expressions relating 
y and ( M /  E )tens to ves t  we used the simplest finite element mesh. Taking the given aspect 

ratio of the pancake - x 16 , the shear modulus G = 60 psi, and the measured y = 0.23, 

it  was found that the effective Poisson’s ratio is ves = 0.492 and the initial modulus in 
tension M,,, = 2990 psi. Using Warren’s equation, one obtains the volume fraction of 
voids from the determined effective material property u , ~ .  It was found that the volume 
fraction of voids a grows from 0.002 to 0.021. 0 1993 John Wiley & Sons, Inc. 
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INTRODUCTION 

The motivation for writing this article is based on 
the belief that unfilled elastomers, in general, are 
“slightly” porous. This article will attempt to define, 
by both geometric and mechanical measurements, 
what is meant by the term “slightly.” This belief 
arises from these observations: 

1. If one plots the measured values of volume 
contraction, produced by hydrostatic pressure 
(Fig. 1 ’ ) , one observes an initial rapid con- 
traction, corresponding to the early collapse 
of voids. Much attention has been given to 
this phenomenon. Articles by Blatz,’ Millo- 
way,3 and Herrmann4 all lead to analytical 
expressions from which one can calculate two 
parameters: void volume fraction and shear 
modulus, which are consistent with the initial 
curvature and limiting slope, displayed in 
Figure 1. 
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2. If one plots simple tension data in the form 

vs. - , where u is the Piola stress 

and X the stretch ratio, one observes again 
an early rapid drop in Young’s modulus (Fig. 
2 5*7), which again we ascribe to void collapse. 

3. Both simple tension data6 and triaxial-pan- 
cake data,7 obtained quasistatically (1. + 0 ) ,  
evince hysteresis between load and unload in 
any one loading cycle. Since viscoelasticity 
dissipation is negligible a t  low rates of exten- 
sion, and in a temperature range at least 
100°C above the glass transition temperature, 
we again ascribe the hysteresis to a mechan- 
ical difference between void opening and void 
closing. Figure 3 shows the Young’s modulus 
vs. strain rate for our nitrile rubber, with Tg 
= -8O”C, at ambient temperature (20°C). 
Figure 3 confirms the statement that our 
rubber is essentially nonviscoelastic. 

U 1 
X - l / X Z  X 

Because of our knowledge and familiarity with 
these observations, we set out to provide a direct 
measurement of volume change in a stress field, 
which enhances the void opening and void growth. 
We prepared a supply of pancake-shaped specimens 
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Effect of shear modulus fitting PV data for a 

of acrylanitrile-butadiene acid copolymeric elasto- 
mers (Table I) .  These specimens were designed to 
have a thickness of 0.381 in. and a radius of 3.0 in. 
Such a specimen, whose thickness /diameter ratio 
is 1 / 16 of a barrel unit, is called a pancake (Fig. 4 ) .  
The specimens were all bonded with Chemlok 205 
adhesive to steel plates, thick enough to be consid- 
ered rigid. Such sandwich combinations were then 
subjected to cyclical loading to various strain levels 
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Figure 2 The uniaxial deformation of natural rubber 
fitted to transversely isotropic Mooney-Rivlin strain en- 
ergy function? 
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Figure 3 Initial modulus E vs. strain rate E for our un- 
filled nitrile rubber whose chemical composition is pre- 
sented in Table I. 

in both tension and compression, provided by an 
MTS testing machine. All displacements rates, both 
in loading and in unloading, were fixed at 0.01 in./ 
min, which corresponds to k = 0.267 min-'. A typical 
set of loading curves is shown in Figure 5. 

While stretching slowly from 0 to 25% strain, we 
measured the diametral contraction of the midplane. 
Figure 6 shows the experimental values of -u,, ( a )  / 
a, plotted vs. c, where a is the radius of the pancake 
( N 3 in.) and -uo(a) is the radial contraction of 
the midplane ( z  = 0)  , measured at the edge ( r  = a ) .  
The best numerical value of the slope y, based on a 
linear regression estimate, is 0.23. 

If we denote the effective pancake modulus by M ,  
we then have the two best values (Fig. 7 )  : 

Mcompr = 6100 psi 

M,,,, = 2500-2700 psi 

What we proposed to do in the next section was to 
adduce various theoretical approaches to evaluating 

Table I 
Nitrile Rubber Samples 

Chemical Composition of the Unfilled 

VOl. 

Chemical Composition (gms) (p i )  (d 
Parts Density Fractions 

~ ~~ ~ 

NBR (KRYNAC-800) 100.0 1.06 0.949821 
Zinc oxide 5.0 5.47 0.009203 
Stearic acid 1.0 0.847 0.011887 
N- Isoprop y 1 -N- P henyl- 

P-P henyllenediamine 1.0 1.3 0.00745 
Magnesium carbonate 

treated elemental 
sulfur 2.0 2.07 0.009728 

Benzothiazyl disulfide 1.5 1.3 0.011617 
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the stress-displacement field throughout the pan- 
cake. Then we attempted to produce an effective 
material property ( u , f f ) ,  which, in turn, is consistent 
with the measured values of ( y ,  Mcompr, Mtens 1. 

The limitations of this experimental work are as 
follows: 

An “unfilled” rubber is “slightly” porous. Our 
particular nitrile rubber contains 2% by wt ZnO, 
with a density of 5.47. This corresponds to a content 
of rigid filler particles ca. 0.9% by volume. The 
meaning of “unfilled” is anything less than 1%. It 
probably is possible to prepare samples with 0% filler 
particles, using DiCup cure, as did Wood et a1.8 at 
the N.B.S. 

The meaning of “slightly” is approximately 0.01 
to 0.1 vol % in the virgin specimen. Thus, we expect 
the virgin material to evince a rapid collapse of vol- 
ume in such amount, prior to evincing the stiffness 
associated with the bulk modulus of ca. 1 Mpsi. 

Unpublished data, determined by A. Lepie’ at the 
N.W.C., China Lake, California, on a number of un- 
filled rubber polymers evince collapse volumes, such 
as 2%, matching C. Surland’s pioneering work. 

When a pancake is first compressed, a number of 
things should be done, which were not done in this 
case. 

First, an upper limit of compression, for example 
5%, should be chosen. Then (always maintaining 
the loading rate at 0.01 in./min) , the pancake should 
be squeezed to 5%, unloaded to O%, and checked for 
any permanent set, which may have arisen from the 
glue line. Second, the two slopes should be compared 
for consistency. Third, this cycle should be repeated 
several times until the best value of Mcompr is ob- 
tained. Fourth, the diametral bulge of the midplane 
should be measured. If calipers with dull pointed 
tips are used, (radius of curvature = 400 p), then 

ug( a )  can be measured accurately to better than 5%. 
Finally, the range of compressive strain can be ex- 
tended from 5% to 10% and the whole procedure 
can be repeated. 

When one passes from compression to tension, 
two additional features of behavior enter the prob- 
lem. First, the original 0.02% voids may grow rapidly 
to approximately 2% for two reasons. The voids in 
the virgin material are maintained in a semiclosed, 
buckled state by weak adhesive forces, engendered 
by the curing process (temperature and pressure). 
Second, additional voids may arise by virtue of the 
breaking of weak adhesive bonds between the gum 
stock and any filter particles, such as zinc oxide. In 
order to sort out these effects, it is worthwhile to 
cycle between -5% and 5% strain, doing all the 
checks suggested above, along with measuring 
-uo(a)  as well as +uo(a) .  

Finally, another phenomenon occurs, namely an 
ablative type of tearing of the voids, which the data 
of Figure 5 ( a )  suggest becomes important when the 
tensile strain exceeds 20%. 

In obtaining the data for Figure 5 ( b  ) , we cycled 
a sample between 0 and 10% tensile strain. The 
modulus M,,,, dropped from 6100 psi in the first pull 
to 2500 psi in the fourth pull, which stays fairly con- 
stant thereafter. 

The stress field in the interior of the pancake is 
essentially hydrostatic, as shown below. Thus, the 
stress field at the surface of most voids is essentially 
equibiaxial. In order to document the statement that 
tear starts at 20% strain, this equibiaxial strain is 
converted to a biaxial stress a t  the void surface 
and that stress is compared with an experimentally 
measured value of failure stress in equibiaxial 
loading. 

Conversely, after a critical uniaxial strain is 
identified, below which voids do not tear, then the 
hysteresis must be ascribed to buckling phenomena. 

In performing the type of program discussed 
above, it is important to realize that all behaviors 
approach limiting values, such as ( a / h )  + co . Thus, 
a systematic experimental program will include 
measurements made over a range of aspect rations 
(2  a / h )  = 8, 12, 16, 20, 24, and so on. The upper 
limit that is experimentally achievable is determined 
by the available load cell and type of testing machine. 

T H E  STRESS-DISPLACEMENT FIELD 

First, the domain of the pancake is geometrized by 
embedding cylindrical coordinates. Below is a sketch 
of a one quarter domain with boundary conditions: 
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Figure 5 ( a )  Stress-strain curves with hystersis from a pancake sample, subjected to 
uniform tension (the chemical composition of the sample is presented in Table I ) .  (b)  
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Figure 6 Measured values of the lateral contraction of 
the mid-plan -u,,(a)/a vs. strain E for our “unfilled” nitrile 
rubber pancake samples (aspect ratio 2 a / h  = 16).  
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Figure 7 Diametral contraction y = - u o ( a ) / a  vs. ef- 
fective Poisson’s ratio veff from eq. ( 15) ,  using the IMSL 
computer subroutines. 

and likewise, the left boundary is an SD-surface at 

u = o  

7 ,  = 0 (shear) 
r = o(  

Much work has been performed on this problem. 
Levinson lo inputed neo-Hookean character to the 
rubber, assuming that all z-planes remained parallel 
to the z-axis and produced a variational solution. 
About the same time Lindsey et al.” used a varia- 
tional approach with material linearity, and the dual 
assumptions: 

w = CZ (1) 

u = c ( r )  7 - 1  (Y ) 
We repeat here the evolution of their solution, 

obtained by minimizing a Helmholtz potential en- 
ergy. 

From eqs. ( 1 ) and ( 2 ) , one obtains: 

e, = u, = c ’ ( r )  - - 1 (radial strain) ( 3 )  
(?ZZ ) 

ee = ( u / r )  = ( c / r )  7 - 1 (Y ) 
(tangential strain) ( 4 )  
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e, = w, = e (axial strain) ( 5 )  

erz = (u, + w,)/2 = c(r) (4z /h2)  

(shear strain) ( 6 )  

W = (G/(1-2v)) [ ( l  - v)(ep + ei + ep) 

+ 2(1-2v)e:~ + 2v(ere0 + erez + eOe,)] 

(strain energy) ( 7 )  

@ =  J h I 2  dz L 2 r r  dr W 
-h /2  

(Helmholtz free energy function) ( 8 )  

Note that the other term in the function, namely 
the potential of the external forces, contributes 
nothing along the SD, SD, and SN boundaries (cf. 
Levinson lo).  

Using calculus of variations, 6@ = 0 is set and, 
after skipping the algebraic details, the following is 
obtained 

( 9 )  
5vea 

u = - -  -* ( :z2 ')If$:; 4 [  ( 1  - v)m - (1-2v)l 

where 

and 

Lindsey, starting from z-averaged equilibrium 
equations, rather than from the functional equa- 
tions, obtained 6 instead of 5 under the radical in 
the definition of kappa. 

M is obtained by setting 

@min/?ra2h = M e 2 / 2  

From eq. ( 9 ) ,  we observe that: 

y = -  

Figure 7 shows how veff depends on ymeas. With 
ymeas = 0.23 and ( a /  h) = 7.87, veff = 0.479 is obtained. 

After 0.479 is inserted into eq. (14) ,  with E = 180 
psi (Fig. 3 ) ,  M = 1084 psi is obtained, which is well 
below the measured value of approximately 2500- 
2700 psi. On the contrary, if one reverses the pro- 
cedure and calculates vetf from Mmeas, one obtains 
0.492, which predicts that ymeas should be 0.34, 50% 
higher than that which was measured. We predict 
that the starting assumptions, eqs. ( 1 ) and ( 2 )  of 
the variational analysis, are too crude. Physically, 
the axial displacement is expected to be a function 
of the form: 

w = cz + d(r )  - - z 3  ("4" ) 
which allows the z-planes to warp at the free surface 
(see sketch below) : 

This effect cannot be predicted by a second-order 
differential equation. One needs the full fourth order 
theory, which is analytically tedious, in order to ob- 
tain the correct z-dependencies for u and w at the 
edge ( r  = a ) .  

Thus, finite elements were investigated. In order 
to obtain analytical expressions relating y and M /  
E to v ,B,  we took the simplest mesh possible, namely: 

two elements, and one free node (#1)  . 
After choosing shape functions that were linear 

in r and z ,  we evaluated the functional, differentiated 
with respect to ul ,  set it equal to zero, and evaluated 
all desired quantities, much as was done in the I -  
element process discussed earlier. All the details are 
provided in the Appendix. 

The resulting expressions are: 

(16)  
9v 

2 [ ( 4  - v )  + 6 ( 1 - 2 ~ ) ( a / h ) ~ ]  Y =  

(2-2v) Y 
M = -  G ( I - -  1 - 2 )  

(1-2v) 
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with ( a / h )  = 8, G = 60 psi, y = 0.23, one obtains 
u,e = 0.492 and M = 2990 psi. 

These results bring the measured y in line with 
the measured M .  What remains to be done is to 
refine the mesh and, using a good axisymmetric fi- 
nite element code, to find the values of y and M as 
functions of the parameters ueff and a / h .  We are in 
the process of doing this. Pickett12 and Brady13 have 
addressed this problem. The published curves do not, 
however, apply to our aspect ratio ( 2  a / h  = 16).  
We hope that this work will inspire other investi- 
gators to produce diametral mid-plane deformations 
of pancakes, as well as to inspire other computer 
experts to provide accurate numerical evaluations 
of the pancake stress-displacement field for an ap- 
propriate range of aspect ratios. 

VOIDS 

With the measured values y = 0.23, Mkns = 2500 
psi in hand, and a linear finite element method 
( FEM ) calculation ( albeit crude ) , producing an ef- 
fective Poisson's ratio, ueff = 0.492, it is tempting to 
ask what volume fraction of voids corresponds to 
this ueR.  

An immediate answer is provided by Warren,14 
who, on the basis of linear analysis, arrives at 

-0 
2 - 4 ~  u E 1 /2  

3-3v U E  -1 

with v = 0.492 and a = 0.021 ( a is the volume frac- 
tion of voids). 
Thus, we conclude that, as we cycle from 0-10% 
tensile strain 

Me,, falls from 6100 to 2500 psi 
u falls from 0.49994 to 0.492 
a grows from 0.002 to 0.021 

Note that (1 - ( E / 3 K ) ) / 2  = 0.49994, E = 180 psi 
(measured), and K = 500,000 psi (measured). 

A more exacting answer is provided by the non- 
linear theory. We first stretched some O-rings, made 
from the same material, in simple tension at the 
same rate and temperature. A typical curve is shown 
in Figure 8. 

We chose a 1-term Ogden strain energy of the 
form15: 

The Cauchy stress principle is given by: 

where u, is the Piola stress principle. 
In simple tension, eq. (19) is reduced to: 

An excellent fit up to 300% strain is obtained with 
G = 60 psi ( = E / 3 )  and n = 1.6. 

The next step is to solve the problem of pressur- 
izing a thick spherical shell, A I R I B .  The void 
(radius A ) is traction-free and to the outer surface 
( R  2 B )  is applied pressure P.  For this geometry, 
X1 = 1 / X 2  and Xz = X3 = A. 

Skipping algebraic details, one obtains: 

xi2" ( n  - 1 ) X P 2 "  t - a2X2 = - A "  -- - 
2 -  2G[ n n n 

(h3" - h 3 )  dX 
- P  (22)  

at  R = A ,  tl = 0, thus, 

which, after suitable approximation, leads to: 

+ ( l - a ) ;  ( Y = ( A / B ) ~  ( 2 5 )  

as 

- % P i ,  
n 

co > A: > 0 (void closure) 

co > X i  > ( 1 - a )  

00 > T >  --CO (27) J =  1 (18) 
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Figure 8 Stress-strain data from O-ring samples using 
unfilled nitrile rubber (Table I ) .  The data were fitting 
with one-term Ogden energy function. 

When P becomes negative, A: rises rapidly; all 
rubbers, following the notation of Prager, are “lock- 
ing” materials, and start to fail when X reaches A,,, 
= 6. With A,,, = 6, G = 60 psi, n = 1.6, and a 
= 0.021, T,,, = 1320 psi is obtained, which should 
match the measured equibiaxial failure stress. 

It is hoped that other investigators pursue this 
checkpoint. The spherical shell solution, evaluated 
at  R = B ,  is essentially hydrostatic 

Note that in eqs. (21) and (22) ,  Ab = 1 and the 
integral is negligible. 

Furthermore, the interior pancake stress is nearly 
hydrostatic, because 

K + ( 4 / 3 ) G = K -  (2/3)G ( s inceK%G) 

This is the basis of the lubrication theory. Thus, one 
can carry out the spherical shell results to the in- 
terior of the pancake by assuming that each void is 

surrounded by its share of rubber matrix and by 
assuming, further, that the voids do not interact. 

The interior field of the pancake extends to about 
3a/4. Beyond that, a boundary layer solution is in 
order. 

In conclusion, it is hoped that this article stim- 
ulates other investigators to: 

1. Measure pancake bulge and contraction. 
2.  Do all measurements at slow rates of dis- 

3. Do FEM calculations for large aspect ratios. 
4. Characterize the rubber uniaxially and equi- 

5. Measure the equibiaxial failure strain. 

placements. 

biaxially . 

APPENDIX 

We choose a right-handed coordinate frame (see 
sketch below): 

SN 
I 

I 
f SO 

ORIGIN 

DD 
1 

a,, r 

0 L,, 
Somewhere in the domain of the quarter-pad, a 

triangle is embedded, whose vertices serve as nodes, 
lettered ( i ,  j ,  k )  in counterclockwise order, and 
which serve as an even transposition of the reference 
cycle ( 1, 2, 3 ) .  The vectors to the nodal points are 
denoted by ri and the displacement vectors by u1. 

If one assumes u in the triangle is given by 

z = A + 3.z + & (A-1)  

one evaluates u at ( i ,  j ,  k )  and inverts the matrix, 
then 

2 lii(Ai + Biz + Cir)  
’ (A-2)  C Ai 

i 
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where 

Ai = eijkzjrk; 2 X area of triangle = C Ai 

B .  = e.. r .1  
1 y k  J k 

ci = eijkljzk with dj ,  k summed 

It follows that: 

C uici 
e, = ~ C Ai 

i 

es = - 2 ui C A i  + ci) 

i e, = ~ C Ai 
i 

and 

i 

2 C Ai 
i 

erz = 

For triangle I, 

For triangle 11, 
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